久久99精品视频一区,把老师下面日出水视频,国产成人欧美日韩在线电影,外国特级AAAA免费

上海申思特自動化設備有限公司

主營產品: 美國E E傳感器,美國E E減壓閥,意大利ATOS阿托斯油缸,丹麥GRAS麥克風,丹麥GRAS人工頭, ASCO電磁閥,IFM易福門傳感器

10

聯系電話

19121166298

您現在的位置: 首頁> 公司動態> PLANETROLL攪拌器PD120-GAC070-1AA1計算方法

美國Fairchild仙童

美國E+E

美國WILKERSON威爾克森

美國G+F

德國MAHLE馬勒

德國Kubler庫伯勒

意大利UNIVER

意大利CAMOZZI康茂勝

意大利ATOS阿托斯

意大利OMAL歐瑪爾

英國NORGREN海隆諾冠

美國ROSS

美國VICKERS威格士

美國PARKER派克

美國NUMATICS紐曼蒂克

美國MAC電磁閥

美國ASCO阿斯卡

美國VERSA

德國EPRO艾默生

德國SAMSON薩姆森

德國施邁賽SCHMERSAL

德國MURR穆爾

德國Hengstler亨士樂

德國Hirschmann赫斯曼

德國Turck圖爾

德國SICK施克

德國HEIDENHAIN海德漢

德國E+H恩德斯豪斯

德國PILZ皮爾茲

德國HYDAC賀德克

德國REXROTH力士樂

德國HAWE哈威

德國P+F倍加福

德國DEMAG德馬格

德國IFM易福門

德國FESTO費斯托

德國寶德BURKERT

德國伯恩斯坦

AI-TEK阿泰克

美國太陽SUN

美國米頓羅MILTONROY

寶德

意爾創ELTRA編碼器

意大利杰弗倫

德國馬勒

德國安士能

美國BANNER邦納

美國BARKSDALE巴士德

德國GEMU蓋米

意大利ELTRA意爾創

德國SCHMERSAL施邁賽

德國STAUFF西德福

瑞士BAUMER堡盟

法國CROUZET高諾斯

德國HERION海隆

德國TR帝爾

德國Schonbuch訊巴赫

意大利DUPLOMATIC迪普馬

德國SCHUNK雄克

德國BAUSER寶色

瑞士SWAN天鵝

美國CRYDOM快達

德國LEM萊姆傳感器

德國LAYHER

美國GAST嘉仕達

德國亨士樂

德國gsr

德國德爾格

德國蓋米

德國蒂芬巴赫TIEFENBACH

公司信息

人:
周經理
話:
021-13321956356
機:
19121166298
真:
址:
上海市黃浦區北京東路668號科技京城東樓27樓C1室
編:
化:
www.wister8-china.com
址:
鋪:
http://sitka.cn/st338048/
給他留言

PLANETROLL攪拌器PD120-GAC070-1AA1計算方法

2017-12-26  閱讀(606)

PLANETROLL攪拌器PD120-GAC070-1AA1計算方法


攪拌功率的基本計算方法
理論上雖然可將攪拌功率分為攪拌器功率和攪拌作業功率兩個方面考慮,但在實踐中一般只考慮或主要考慮攪拌器功率,因攪拌作業功率很難予以準確測定,一般通過設定攪拌器的轉速來滿足達到所需的攪拌作業功率。從攪拌器功率的概念出發,影響攪拌功率的主要因素如下。
① 攪拌器的結構和運行參數,如攪拌器的型式、槳葉直徑和寬度、槳葉的傾角、槳葉數量、攪拌器的轉速等。
② 攪拌槽的結構參數,如攪拌槽內徑和高度、有無擋板或導流筒、擋板的寬度和數量、導流筒直徑等。
③ 攪拌介質的物性,如各介質的密度、液相介質黏度、固體顆粒大小、氣體介質通氣率等。
由以上分析可見,影響攪拌功率的因素是很復雜的,一般難以直接通過理論分析方法來得到攪拌功率的計算方程。因此,借助于實驗方法,再結合理論分析,是求得攪拌功率計算公式的惟一途徑。
由流體力學的納維爾-斯托克斯方程,并將其表示成無量綱形式,可得到無量綱關系式(11-14)。
Np=P/ρN³dj5=f(Re,Fr)
式中Np——功率準數
Fr——弗魯德數,Fr=N²dj/g;
P——攪拌功率,W。
式(11-14)中,雷諾數反映了流體慣性力與粘滯力之比,而弗魯德數反映了流體慣性力與重力之比。實驗表明,除了在Re﹥300的過渡流狀態時,Fr數對攪拌功率都沒有影響。即使在Re﹥300的過渡流狀態,Fr數對大部分的攪拌槳葉影響也不大。因此在工程上都直接把功率因數表示成雷諾數的函數,而不考慮弗魯德數的影響。
由于在雷諾數中僅包含了攪拌器的轉速、槳葉直徑、流體的密度和黏度,因此對于以上提及的其他眾多因素必須在實驗中予以設定,然后測出功率準數與雷諾數的關系。由此可以看到,從實驗得到的所有功率準數與雷諾數的關系曲線或方程都只能在一定的條件范圍內才能使用。zui明顯的是對不同的槳型,功率準數與雷諾數的關系曲線是不同的,它們的Np-Re關系曲線也會不同。
PLANETROLL攪拌
粘度是指流體對流動的阻抗能力,其定義為:液體以1cm/s的速度流動時,在每1cm2平面上所需剪應力的大小,稱為動力粘度,以Pa·s為單位。 粘度是流體的一種屬性。流體在管路中流動時,有層流、過渡流、湍流三種狀態,攪拌設備中同樣也存在這三種流動狀態,而決定這些狀態的主要參數之一就是流體的粘度。 在攪拌過程中,一般認為粘度小于5Pa/s的為低粘度流體,例如水、蓖麻油、飴糖、果醬、蜂蜜、潤滑油重油、低粘乳液等;5-50Pa/s的為中粘度流體,例如油墨、牙膏等;50-500Pa/s的為高粘度流體,例如口香糖、增塑溶膠、固體燃料等;大于500Pa/s的為特高粘流體例如:橡膠混合物、塑料熔體、有機硅等。 對于低粘度介質,用小直徑的高轉速的攪拌器就能帶動周圍的流體循環,并至遠處。而高粘度介質的流體則不然,需直接用攪拌器來推動。 適用于低粘和中粘流體的葉輪有槳式、開啟渦輪式、推進式、長薄葉螺旋槳式、圓盤渦輪式、布魯馬金式、板框槳式、三葉后彎式、MIG式等。適用于高粘和特高粘流體的葉輪有螺帶式葉輪、螺桿式、錨式、框式、螺旋槳式等。有的流體粘度隨反應進行而變化,就需要用能適合寬粘度領域的葉輪,如泛能式葉輪等。


planetroll?ATEX實驗室攪拌器SRW 100實驗室和試驗工廠應用
站ATEX實驗室攪拌器SRW 100是專為實驗室和試驗工廠開發的電臺。領域的應用程序擴展從低到高粘度的粘度范圍的產品。
決定性的優勢
的planetroll?ATEX實驗室攪拌器SRW 100適用于ATEX區1和2沒有監控系統
運行平穩手動中風調整由于起重柱內部制衡
進一步減輕中風提供的操作高度可以單獨地操作的鎖緊裝置夾緊機制
速動查克攪拌軸安裝一個簡單的沒有使用任何額外的工具
的屬性
不同攪拌元素和攪拌軸允許使用各種容器的大小為你的個人激動人心的任務
通過手輪調速與集成規模?再現性定義的輸出速度
planetroll? ATEX laboratory stand stirrer SRW 100 for laboratory and pilot plant applications
The ATEX laboratory stand stirrer SRW 100 is developed specifically for laboratories and pilot plant stations. The fields of application extend from a viscosity range of low- to high-viscosity products.
The decisive advantages
The planetroll? ATEX laboratory stand stirrer SRW 100 is applicable in the ATEX zone 1 and 2 without monitoring system
Smooth-running manual stroke adjustment due to counterweight inside lifting column
A further ease of operation is offered by the stroke height locking device which can be operated single-handed by clamping mechanism
Quick-action chuck for an easy stirrer shaft mounting without using any additional tools
The properties
Different stirring elements and stirring shafts allow the use of various container sizes for your individual stirring tasks
Speed adjustment by means of hand wheel with integrated scale? for the reproducibility of defined output speeds
The special technology
planetroll? variable-speed gearboxes for your optimal stirring result speed adjustment as well as the speed adaption for changes in viscosity
Highest starting torques from stirring shaft speed zero
Infiniy variable speed adjustment from and to zero speed with maximum torque
The stand alignment is realized by adjustable feet
Easily operated container clamping (optionally) ensures a centrical alignment of the stirred container to the stirring element
Available executions
For the technical data of the available executions, please see the product data sheet, which you can download here as pdf-file.
類型編輯
①旋槳式攪拌器
由2~3片推進式螺旋槳葉構成(圖2),工作轉速較高,葉片外緣的圓周速度一般為5~15m/s。旋槳式攪拌器主要造成軸
向液流,產生較大的循環量,適用于攪拌低粘度 (<2Pa·s)液
體、乳濁液及固體微粒含量低于10%的懸浮液。攪拌器的轉軸
也可水平或斜向插入槽內,此時液流的循環回路不對稱,可增
加湍動,防止液面凹陷。
②渦輪式攪拌器
由在水平圓盤上安裝2~4片平直的或彎曲的葉片
所構成。
PLANETROLL渦輪式攪拌器
槳葉的外徑、寬度與高度的比例,一般為20:5:4,
圓周速度一般為 3~8m/s。渦輪在旋轉時造成高度湍動的
徑向流動,適用于氣體及不互溶液體的分散和液液相反應
過程。被攪拌液體的粘度一般不超過25Pa·s。
③槳式攪拌器
有平槳式和斜槳式兩種。平槳式攪拌器由兩片平直槳葉構成。槳葉直徑與高度之比為 4~10,圓周速度為1.5~3m/s,所產生的徑向液
PLANETROLL斜槳式攪拌器
流速度較小。斜槳式攪拌器(圖4)的兩葉相反折轉45°或60°,因而產生軸向液流。槳式攪拌器結構簡單,常用于低粘度液體的混合以及固體微粒的溶解和懸浮。
④錨式攪拌器
槳葉外緣形狀與攪拌槽內壁要一致(圖5),其間僅有很小間隙,可清除附在槽壁上的粘性反應產物或堆積于槽底的固體物,保持較好的傳熱效果。槳葉外緣的圓周速度為
0.5~1.5m/s,可用于攪拌粘度高達 200Pa·s的牛頓型流體
PLANETROLL錨式攪拌器
和擬塑性流體(見粘性流體流動。唯攪拌高粘度液體時,液層中有較大的停滯區。
⑤螺帶式攪拌器
螺帶的外徑與螺距相等,專門用于攪拌高粘度液體(200~500Pa·s)及擬塑性流體,通常在層流狀態下操作。
⑥磁力攪拌器
Corning數字式加熱器帶有一個閉路旋鈕來監控與調節攪拌速度。 微處理器自動調節馬達動力去適應水質、粘性溶液與半固體溶液。
⑦磁力加熱攪拌器
Corning數字式加熱攪拌器帶有可選的外部溫度控制器 (Cat. No. 6795PR) ,他們還可以監控與控制容器中的溫度。
⑧PLANETROLL折葉式攪拌器
根據不同介質的物理學性質、容量、攪拌目的選擇相應的攪拌器,對促進化學反應速度、提高生產效率能起到很大的作用。折葉渦輪攪拌器一般適應于氣、液相混合的反應,攪拌器轉數一般應選擇300r/min以上。
⑨PLANETROLL變頻雙層攪拌器
變頻攪拌器的底座、支桿、電動機使用技術固定為一體。夾頭,無松動、無搖擺、不會脫落,安全可靠。鍍鉻支桿,下粗上細,鋼性強、結構合理。具有移動方便,重量輕等優點。適合各類小型容器。
⑩PLANETROLL側入式攪拌機
側入式攪拌機是將攪拌裝置安裝在設備筒體的側壁上,攪拌機上的攪拌器通常采用軸流型,以推進式攪拌器為多,在消耗同等功率情況下,能得到zui高的攪拌效果,功率消耗僅為頂攪拌的1/3~2/3,成本僅為頂攪拌的1/4~1/3。轉速可在200~750r/min。
廣泛用于脫硫、除硝以及各種大型貯罐或貯槽的攪拌。特別是在大型貯槽或貯罐中利用一臺或多臺側入式攪拌機一起工作,在消耗低能耗的情況下便可以得到良好的攪拌效果。
PLANETROLL攪拌功率
攪拌器向液體輸出的功率P,按下式計算:
P=Kd5N3ρ
式中K為功率準數,它是攪拌雷諾數Rej(Rej=d2Nρ/μ)的函數;d和N 分別為攪拌器的直徑和轉速;ρ和μ分別為混合液的密度和粘度。對于一定幾何結構的PLANETROLL攪拌器和攪拌槽,K與Rej的函數關系可由實驗測定,將這函數關系繪成曲線,稱為功率曲線(圖7)。
攪拌功率的基本計算方法
理論上雖然可將攪拌功率分為攪拌器功率和攪拌作業功率兩個方面考慮,但在實踐中一般只考慮或主要考慮攪拌器功率,因攪拌作業功率很難予以準確測定,一般通過設定攪拌器的轉速來滿足達到所需的攪拌作業功率。從攪拌器功率的概念出發,影響攪拌功率的主要因素如下。
① 攪拌器的結構和運行參數,如攪拌器的型式、槳葉直徑和寬度、槳葉的傾角、槳葉數量、攪拌器的轉速等。
② 攪拌槽的結構參數,如攪拌槽內徑和高度、有無擋板或導流筒、擋板的寬度和數量、導流筒直徑等。
③ 攪拌介質的物性,如各介質的密度、液相介質黏度、固體顆粒大小、氣體介質通氣率等。
由以上分析可見,影響攪拌功率的因素是很復雜的,一般難以直接通過理論分析方法來得到攪拌功率的計算方程。因此,借助于實驗方法,再結合理論分析,是求得攪拌功率計算公式的惟一途徑。
由流體力學的納維爾-斯托克斯方程,并將其表示成無量綱形式,可得到無量綱關系式(11-14)。
Np=P/ρN&sup3;dj5=f(Re,Fr)
式中Np——功率準數
Fr——弗魯德數,Fr=N&sup2;dj/g;
P——攪拌功率,W。
式(11-14)中,雷諾數反映了流體慣性力與粘滯力之比,而弗魯德數反映了流體慣性力與重力之比。實驗表明,除了在Re﹥300的過渡流狀態時,Fr數對攪拌功率都沒有影響。即使在Re﹥300的過渡流狀態,Fr數對大部分的攪拌槳葉影響也不大。因此在工程上都直接把功率因數表示成雷諾數的函數,而不考慮弗魯德數的影響。
由于在雷諾數中僅包含了攪拌器的轉速、槳葉直徑、流體的密度和黏度,因此對于以上提及的其他眾多因素必須在實驗中予以設定,然后測出功率準數與雷諾數的關系。由此可以看到,從實驗得到的所有功率準數與雷諾數的關系曲線或方程都只能在一定的條件范圍內才能使用。zui明顯的是對不同的槳型,功率準數與雷諾數的關系曲線是不同的,它們的Np-Re關系曲線也會不同。
HYDAC             HDA4745-A-100-000
HYDAC             HDA4744-A-016-000
HYDAC             HDA4745-A-016-000
HYDAC             HDA4745-A-060-000
HYDAC             EDS308-5-400-017
HYDAC             ESN3118-5-0520-000-K
STEUTE            1047013
FLINTEC            LAC74.1
EPCOS              BR6000-R12  230VAC 50/60HZ 
BURKERT           00286219
BURKERT            0027643
WAMPFLER         08-K154-0337
WAMPFLER          08-K154-0178
WAMPFLER          08-K011-0586
WAMPFLER           08-86250
WOERNER            337.481-AG
CEME                  6590VV1.8B054A2
CVS                      432500-00
AVENTICS             0821302184
AVENTICS             5811170650
AVENTICS             R480141666
GOETZE                 681M GFO-SP  DN25
KTR                       KTR-ROTEX:GS28
STORZ                   HZD 2-160/100-3586
RICKMEIER             R25/12.5
PILZ                        777301
GEMU                     62080DM14
SAMSON                 6111-1104446
SAMSON                 2819177
MICRO                   DETECTORS(MD) FS1/OP-E
PLANETROLL           PD120-GAC070-1AA1
SFTEC               Z28-300-766 GA-WG 0/1200N
WALTHER               SG-006-0



產品對比 產品對比 二維碼 在線交流

掃一掃訪問手機商鋪

對比框

在線留言