久久99精品视频一区,把老师下面日出水视频,国产成人欧美日韩在线电影,外国特级AAAA免费

產品推薦:氣相|液相|光譜|質譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養箱


化工儀器網>技術中心>專業論文>正文

歡迎聯系我

有什么可以幫您? 在線咨詢

flexcell細胞壓力儀文獻

來源:flexcell代理商世聯博研(北京)科技有限公司   2020年02月19日 21:35  

flexcell細胞壓力儀典型應用文獻:

Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964, 2012.
2. Bougault C, Paumier A, Aubert-Foucher E, Mallein-Gerin F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol 8:71, 2008.
3. Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 15(5):2890-2896, 2017.
4. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 20(23-24):3142-3153, 2014.
5. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 21(9-10):1720-32, 2015.
6. Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806–810, 2001.

7. Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935-941, 2005.
8. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
9. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798, 2002.
10. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
11. Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng 12(6):1527-1537, 2006.
12. Glaeser JD, Salehi K, Kanim LE, NaPier Z, Kropf MA, Cuellar J, Sheyn D, Bae HW. Treatment with the NF?B inhibitor reduces overloading-induced MMP expression in human nucleus pulposus cells. The Spine Journal 17(10):S127, 2017.
13. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Research & Therapy 8:R135, 2006.
14. Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43(7):1571-1579, 2000.
15. Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311(5):H1189-H1201, 2016.
16. Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y. Construction of collagen gel scaffolds for mechanical stress analysis. Biosci Biotechnol Biochem 78(3):458-61, 2014.
17. Hazenbiller O, Duncan NA, Krawetz RJ. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide. BMC Cell Biol 18(1):32, 2017. doi: 10.1186/s12860-017-0148-6.
18. Hennerbichler A, Fermor B, Hennerbichler, Weinberg JB, Guilak F. Regional differences in prostaglandin E2 and nitric oxide production in the knee meniscus in response to dynamic compression. Biochemical and Biophysical Research Communications 358:1047–1053, 2007.
19. Huang D, Liu YP, Huang YJ, Xie YF, Shen KH, Zhang DW, Mou Y. Mechanical compression up-regulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 55(5-6):391-6, 2014.
20. Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 13:225-234, 2005.
21. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
22. Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, Yan T. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 36(4), 2016. pii: e00355.
23. Li X, Dong J, Liu C, Wang X, An M, Chen W. Contributions of intermittent cyclic compression to proteoglycans synthesis and mechanical properties of knee articular cartilaginous tissue formed in vitro. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference 4:1655-1658, 2010.
24. Maxson S, Orr D, Burg K. Bioreactors for tissue engineering. Tissue Eng 179-197, 2011.
25. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res 59(6):471-477, 2010.
26. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621-9, 2016.
27. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16(1):R16, 2014.

28. Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:1092-1099, 2005.
29. Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain. Tissue Eng Part A 21(3-4):518-29, 2015.
30. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17(4):473-481, 2009.
31. Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193-203. 2012.
32. Sharma R, Vinjamaram S, Shah VA, Gupta SK, Chalam KV. The effect of elevated atmospheric pressure on the survival of retinal ganglion cells using Flexcell biopress system. Invest Ophthalmol Vis Sci 44:E-Abstract 152, 2003.
33. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
34. Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556-562, 2007.
35. Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. Cytotechnology 67(1):19-26, 2015.
36. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963-969, 2003.
37. Werkmeister E, de Isla N, Netter P, Stoltz JF, Dumas D. Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy. Photochem Photobiol 86(2):302-310, 2010.
38. Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. European Journal of Histochemistry 58:2415, 2014.
39. Zhou Q, Yu BH, Liu WC, Wang ZL. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim 52(7):757-71, 2016.
40. Zhou W, Liu G, Yang S, Ye S. Investigation for effects of cyclical dynamic compression on matrix metabolite and mechanical properties of chondrocytes cultured in alginate. Journal of Hard Tissue Biology 25(4):351-356, 2016.

細胞壓力儀,flexcell FX-5000C-

 FX-5000C細胞壓力加載培養與實時觀察系統(flexcell FX5000 Compression system)現貨銷售

美國Flexcell公司專注于細胞組織應力(牽張拉伸應力、三維水凝膠牽張拉伸應力、壓應力和流體切應力等)加載刺激培養產品的設計和制造,提供*的體外細胞拉應力、壓應力和流體剪切應力加載刺激與立體水凝膠支架三維細胞組織牽拉加載培養系統而*。其產品成熟度高、成功應用文獻量達4000多篇,國內有包括上海交通大學、復旦大學、同濟大學、上海第九醫院、中科院力學所、北京大學第三醫院、北航生物與醫學工程學院、都醫科大學、廣州醫科大學、南方科技大學、福建協和醫院、南方醫科大學近100家成功高校、醫院及基礎科研單位使用,無技術風險和使用風險,flexcell體外高通量細胞牽張拉伸力、壓應力以及流體剪切力加載培養系統已成為細胞力學體外加載模型的黃金標準,是細胞組織力學研究者的shou選。

FX-5000C細胞壓力加載系統(flexcell FX5000 Compression system)——提供樣機體驗

系統基本原理(正氣壓交換模式):

利用橡膠密封墊在細胞培養板基底膜與基座之間形成封閉腔,把此密封腔的進、出氣管插入二氧化碳培養箱里,把此密封腔放入二氧化碳培養箱,利用封閉腔正氣壓擠壓培養孔里的活塞,進而使活塞和固定臺之間的凝膠三維培養物間接受到壓力發生形變,通過計算機控制系統調節氣體的壓力來改變基底膜的形變量。

(注釋:壓力加載培養板每個培養孔里都有一對活塞或固定臺)

亮點

1)該系統對各種組織、三維細胞培養物提供周期性或靜態的壓力加載;
2)基于柔性膜基底變形、受力均勻;
3)可實時觀察細胞、組織在壓力作用下的反應;
4)可有選擇性地封阻對細胞的應力加載;

5)同時兼備多通道細胞牽拉力加載功能;

6)多達4通道,可4個不同程序同時運行,進行多個不同壓力形變率對比實驗;

7)同一程序中可以運行多種頻率(0.01- 5 Hz),多種振幅和多種波形;
8)更好地控制在超低或超高應力下的波形;
9)多種波形種類:靜態波形、正旋波形、心動波形、三角波形、矩形以及各種特制波形;
10)電腦系統對壓力加載周期、大小、頻率、持續時間智能調控
11)壓力范圍:0.1 - 14磅,夾在活塞和固定臺之間的BioPress細胞培養板可承受正壓力的大值為14磅,小值為0.1磅。
12)典型應用科室: 
檢測各種三維細胞組織在壓力作用下的生物變化、反應, 
例如:軟骨組織,椎間盤骨組織,肌腱組織,韌帶組織,以及從肌肉,肺,心臟,血管,皮膚,肌腱,韌帶,軟骨和骨中分離出來的細胞。 
13)在智能電腦主機的控制下,壓力傳導儀內的密封閥門裝置自動調節和控制壓力。 
14)系統具有模塊化易升級,可擴展拉應力加載、流利切應力加載、三維細胞組織培養功能。具有細胞組織力學所要求的所有類型:牽張拉伸力、壓力、流體切應力加載刺激功能。 
15)通過StagePress顯微壓應力加載設備,實時觀察細胞、組織在拉/壓應力作用下的反應 
16)FX-5000C細胞組織壓應力加載系統組成:

  • 預裝FlexSoft®FX-5000軟件的的計算機;
  • FX5K™ Compression FlexLink壓力加載控制傳導儀
  • 一個正壓力加載培養腔室基板
  • 一套密封墊片和壓力夾固系統
  • 四塊六孔細胞壓力加載培養板
  • 一根25英尺藍色Flex In鏈接管(6.4毫米外徑)
  • 一根25英尺無色Flex Out鏈接管(9.5毫米外徑)
  • 一根25英尺牽張拉伸泵鏈接藍管(9.5毫米外徑)
  • 一臺正壓泵

     

    細胞組織壓應力加載刺激系統總結

    培養物級別

    既能對各種組織培養物提供周期性的或靜態的壓力加載,又能對各種三維細胞培養物提供周期性的或靜態的壓力加載

    壓應力波形

    系統既能提供壓應力加載的靜態波形、正旋波形、心動波形、三角波形、矩形波形,又能模擬各種自定義波形, 很好地控制在超低或超高壓應力下的波形.

    多通道加載

    同一程序中可以運行多種頻率,多種振幅和多種波形,4個不同程序可以同時運行,方便進行不同壓力比對比實驗;

    壓力范圍

    0.1 - 14磅

    加載頻率

    0.01- 5 Hz

    壓應力刺激細胞組織類型

    能對軟骨組織、椎間盤骨組織、肌腱組織、韌帶組織,以及從肌肉、肺、心臟、血管、皮膚、肌腱、韌帶、軟骨和骨中分離出來的細胞加壓應力刺激;

    觀察

    在壓應力作用的同時,可以實時觀察細胞組織在壓應力作用下的反應

    易用性

    使用常規的細胞組織壓力加載刺激培養板或培養皿模式進行加載培養,符合常規操作,避免學習難度

免責聲明

  • 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
  • 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
企業未開通此功能
詳詢客服 : 0571-87858618