久久99精品视频一区,把老师下面日出水视频,国产成人欧美日韩在线电影,外国特级AAAA免费

官方微信|手機版

產品展廳

產品求購企業資訊會展

發布詢價單

化工儀器網>產品展廳>光學儀器及設備>光學測量儀>光鑷(光學鑷子)>SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

分享
舉報 評價

SENSOCELL光鑷 細胞組織力學特性定量測試分析光鑷

參考價 211
訂貨量 ≥1
具體成交價以合同協議為準

聯系方式:李勝亮查看聯系方式

聯系我們時請說明是化工儀器網上看到的信息,謝謝!


世聯博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯博研。世聯博研是一家集進口科研儀器代理銷售以及實驗技術服務于一體的技術公司。世聯博研專注生物力學和3D生物打印前沿科研設備代理銷售及科研實驗項目合作服務,內容涵蓋了血管力學生物學、生物力學建模仿真與應用、細胞分子生物力學、組織修復生物力學、骨與關節生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領域科研利器和科研服務。

世聯博研的客戶范圍:
科研院所單位、生物醫學科研高校、醫院基礎科研單位等。

世聯博研公司代理的品牌具有:
1)近10年長期穩定的貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫學組織工程、生物材料學為主,兼顧其他相關產品線
3)提供專業產品培訓和銷售培訓
4)良好的技術支持
5)已成交老客戶考證
6)每年新增的貨源。

細胞應力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統,PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統

產地類別 進口 價格區間 面議
應用領域 醫療衛生,生物產業

細胞組織力學特性定量測試分析系統

在活細胞或3D組織內部執行同時進行力測量和主動/被動微流變測試的256個光學陷阱實驗。同時捕獲256個目標分子或者粒子,浸沒式細胞或組織力學特性定量測量,無需校準。

基本功能概述
陷阱的產生和處理
免校準力測量
振蕩程序
功率譜采集
主動和被動微流變學

粒子操縱和力測量
光阱的產生
粒子操縱
免校準力測量

應用概述:
細胞操作
細胞粘附力
細胞間相互作用
繩索牽引
細胞拉伸
主動和被動微流變學

Papers:

 

  • R. Meissner, N. Oliver and C.Denz. “Optical Force Sensing with Cylindrical Microcontainers“.Part. Part. Syst. Charact. 2018, 1800062.
  • F.Català, F. Marsà, M. Montes Usategui, A. Farré & E. Martín-Badosa. “Influence of experimental parameters on the laser heating of an optical trap“. Sci. Rep. 7, 16052; doi:10.1038/s41598-017-15904-6 (2017).
  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers” 15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at:bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



化工儀器網

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業已關閉在線交流功能